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We discuss recently introduced numerical linked-cluster �NLC� algorithms that allow one to obtain
temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diago-
nalization of finite clusters. We present studies of thermodynamic observables for spin models on square,
triangular, and kagomé lattices. Results for several choices of clusters and extrapolations methods, that accel-
erate the convergence of NLCs, are presented. We also include a comparison of NLC results with those
obtained from exact analytical expressions �where available�, high-temperature expansions �HTE�, exact di-
agonalization �ED� of finite periodic systems, and quantum Monte Carlo simulations. For many models and
properties NLC results are substantially more accurate than HTE and ED.
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I. INTRODUCTION

Accurate quantitative calculations of finite-temperature
properties of quantum lattice models are a challenging task
�1,2�. One of the few general methods that works directly in
the thermodynamic limit is that of high-temperature expan-
sions �HTEs�, where properties of the system are expanded
in powers of inverse temperature, �=1/T �3�. These expan-
sions, carried out to order �N �where N is typically around
10�, provide highly accurate numerical results at high tem-
peratures. However, below some temperature Ts related to
the relevant microscopic energy scale of the system, the se-
ries diverges. Such a divergence need not be related to any
finite-temperature phase transitions or long-range correla-
tions. For example, in low dimensional or frustrated spin
systems, often there is either no finite-temperature phase
transition or such a transition occurs well below the ex-
change constant J. The microscopic energy scale J still con-
trols the radius of convergence of the high-temperature se-
ries.

Beyond the radius of convergence ���s, series extrapo-
lation methods �4� allow one to calculate thermodynamic
properties, but their reliability remains uncertain. Our moti-
vation for developing the numerical linked-cluster �NLC�
method is to be able to obtain the properties of these sys-
tems, in the thermodynamic limit, for ���s in a more reli-
able way, especially if the correlations in the system remain
short ranged. NLC uses the linked-cluster basis of HTE, but
replaces the expansion in � by an exact numerical calcula-
tion of the properties of linked-clusters at any temperature
�5,6�. In any practical implementation of NLC, only the con-
tributions from clusters up to some maximum size are in-
cluded. This can lead to highly accurate properties of the
thermodynamic system, even beyond the radius of conver-
gence of HTE, provided the correlations are short ranged.
Thus, NLC helps to separate cases where the failure of HTE
is due to its analytic structure in the complex plane, from
where the correlations truly exceed the largest clusters stud-
ied. We would like to emphasize that this does not imply that
comparable results for thermodynamic systems can be ob-

tained simply by exact diagonalization �ED� of individual
periodic clusters of size comparable to the maximum size
used in NLC. We will show that NLC can be substantially
more accurate than ED for finite-temperature properties of a
thermodynamic system. Furthermore, one can accelerate the
convergence of NLC, even when correlation length exceeds
the largest cluster studied, by using sequence extrapolation
techniques, which are in many ways analogous to series ex-
trapolation methods �4,7�.

We present in this paper a detailed exposition of the NLC
algorithm. The basic method was already presented in Ref.
�5�. Here we discuss in detail the different choices of clusters
that can be used to build the numerical expansion. We also
detail different extrapolation methods that, such as Pade ap-
proximants for HTE, allow one to accelerate the convergence
of NLC. These methods are especially relevant for the appli-
cation of NLC to models in which correlations build up rap-
idly with reduction in temperature. Comparisons between re-
sults obtained by means of NLC with known techniques such
as exact diagonalization �ED�, quantum Monte Carlo �QMC�
simulations, and HTE are also presented.

The exposition is organized as follows. In Sec. II, we
introduce the basis of NLC. We then present �Sec. III� an
overview of different sequence extrapolation methods that
can help accelerate the convergence of NLC. The rest of the
manuscript is devoted to show how to build the series for
spin models on square �Sec. IV�, triangular �Sec. V�, and
kagomé �Sec. VI� lattices. Different choices of clusters are
discussed in detail, and applied to Ising, XY, and Heisenberg
models. Finally, the conclusions are presented in Sec. VII.

II. BASIS OF NLC

The fundamental basis for a linked-cluster expansion, for
some extensive property P of an infinite lattice L, is the
relation �3,8�

P�L�/N = �
c

L�c� � WP�c� , �1�

where the left-hand side is the value of the property P per
lattice site in the thermodynamic limit. On the right-hand
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side L�c� is the so-called lattice constant, which is the num-
ber of embeddings of the cluster c, per lattice site, in the
lattice L �explicit examples will be given later�. WP�c� is the
weight of the cluster c for the property P. The latter is de-
fined recursively by the principle of inclusion and exclusion
�3�,

WP�c� = P�c� − �
s�c

WP�s� , �2�

where P�c� is the property P calculated for the finite cluster
c. The sum on s runs over all subclusters of c. In HTE, for
every cluster, P�c� and hence its weight WP�c� are expanded
in powers of � and only a finite number of terms are re-
tained. In NLC an exact diagonalization of the cluster is used
to calculate P�c� and WP�c� at any temperature. �Notice that
in contrast to the clusters used in ED studies, the ones in Eq.
�2� do not have periodic boundary conditions.� The exact
numerical calculation of P�c� allows NLC to build more bare
information of the system than HTE.

There is another aspect in which the NLC scheme is fun-
damentally different from HTE, and that can be used to one’s
advantage. In HTE, the choice of clusters is dictated solely
by the need to get the power series expansion in � to as high
an order as possible. This typically means that clusters are
defined and ordered by the number of bonds. In NLC, one
has substantial freedom to select the set of clusters and the
order in which they are considered. One can arrange them by
number of sites, by number of bonds or, as we will see be-
low, one can even consider a reduced set of clusters. In order
to obtain correct results at high temperatures, one require-
ment is that with increasing order, the cluster weights, when
expanded in inverse temperature, should give the correct
HTE coefficients as well. This ensures that when HTE con-
verges, NLC gives results that are identical to HTE. How-
ever, as we will see, NLC expansions may involve a choice
of clusters that sacrifice efficiency in the order to which they
give the exact HTE coefficients, for better results at interme-
diate and low temperatures.

As discussed before, when correlations are shorter ranged
than the size of clusters that are included in any implemen-
tation of NLC, the NLC results are accurate without any
need for extrapolations. On the other hand, for systems with
an ordered ground state, such an implementation must even-
tually break down as the temperature is lowered �larger clus-
ters will start making large contributions�. In the next section
we discuss some “tricks” that can be used to accelerate the
convergence of the direct sum in Eq. �1�. This can lead to
accurate thermodynamic results at temperatures where corre-
lation length far exceeds the sizes of the cluster included in
the sum.

III. SEQUENCE EXTRAPOLATIONS

In this section, we consider the general problem of esti-
mating P�L� in Eq. �1�, when the weights WP are only
known for clusters up to a given size. In order to produce a
sensible extrapolation scheme one can group clusters to-
gether and define

Sn = �
c

L�cn� � WP�cn� , �3�

where all clusters cn share a given characteristic, which could
be, for example, the number of bonds, sites, etc. Equation �1�
can be rewritten as

P�L� = �
n

Sn, �4�

and one can define partial sums as

Pn�L� = �
i=1

n

Si. �5�

So, our goal is to estimate P�L�=limn→�Pn from a sequence
�Pn�, which is known for n=1, . . . ,N.

Several methods have been developed to accelerate the
convergence of such sequences. An extensive review with
references to original papers can be found in Ref. �4�, and
they are similar to series extrapolation methods. We will
briefly describe here three methods that we have imple-
mented, and that have proven to be particularly useful in
accelerating the convergence of NLC. These methods are
known as the Wynn’s ��� algorithm �4�, the Brezinski’s ���
algorithm �4�, and the Euler’s transformation �7�. A very im-
portant topic that is discussed neither here nor in Refs. �4,7�
is one of error estimation. This is because most studies of
errors associated with such extrapolation methods depend on
the underlying function satisfying certain properties. As one
might expect, these properties, in general, cannot be verified
for many of the problems one finds in statistical mechanics.

Wynn’s algorithm is defined as follows �37�:

�n
�−1� = 0, �n

�0� = Pn,

�n
�k� = �n+1

�k−2� +
1

	�n
�k−1� , �6�

where the discrete differentiating operator 	 is only applied
to subscripts

	�n
�k−1� = �n+1

�k−1� − �n
�k−1�. �7�

Within this scheme the even entries �n
�2k� are expected to

converge to P�L�, while the odd ones �n
�2k+1� diverge. Non-

linear sequence extrapolations usually display this behavior,
and it implies that one has to be careful with round-off er-
rors.

One should notice that two iterations are needed for each
level of improvement so the new sequence is two terms
shorter. We refer to each level of improvement as a cycle.
For the problems we have studied so far by means of NLC,
Wynn’s algorithm has been, in general, the most successful
in extending the region of convergency to lower tempera-
tures.

Brezinski’s algorithm is defined as follows:

�n
�−1� = 0, �n

�0� = Pn,
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�n
�2k+1� = �n

�2k−1� +
1

	�n
�2k� ,

�n
�2k+2� = �n+1

�2k� +
	�n+1

�2k�	�n+1
�2k+1�

	2�n
�2k+1� , �8�

once again the discrete differentiating operator 	 is only ap-
plied to subscripts as in Eq. �7� and

	2�n
�k� = �n+2

�k� − 2�n+1
�k� + �n

�k�. �9�

As for Wynn’s algorithm, only even entries are expected
to converge to P�L�. Once again, we call a cycle of improve-
ment after two iterations, and for the Brezinski algorithm
three terms are lost in each cycle. This fact, together with the
second derivative in the denominator in �n

�2k+2� �Eq. �8��, re-
duce the number of cycles one can perform with the Brezin-
ski algorithm as compared to Wynn’s algorithm.

Finally, for alternating series, i.e., series in which terms Sn
�Eq. �4�� alternate in sign �Sn= �−1�nun�, there is a powerful
tool known as the Euler transformation �7�. With this algo-
rithm P��L� is approached by the sum �n is even�

u0 − u1 + u2 ¯ − un−1 + �
s

�− 1�s

2s+1 �	sun� , �10�

where 	 is the forward difference operator

	un = un+1 − un,

	2un = un+2 − 2un+1 + un,

	3un = un+3 − 3un+2 + 3un+1 − un, . . . . �11�

It is always advisable to do the sum of a small number of
terms directly, through term n−1, and then apply the trans-
formation.

As we will show later, we have found Euler’s transforma-
tion to be particularly useful for calculations of the specific
heat. Having stated that NLC provides a scheme that similar
to HTE allows for systematic extrapolations, we should add
some remarks here. What the NLC scheme misses is the
analytic structure of HTE. These have proven particularly
useful in studies of critical phenomena, where the region of
diverging correlation length has also been addressed using
Pade extrapolations �4�. We have not yet investigated if NLC
can be used to study critical phenomena, as our focus has
been on models that do not order down to very low tempera-
tures.

The analytic structure of HTE also allows for changes of
variables, and in some cases this can be used in very inge-
nious ways. For example, recent work by Bernu and Mis-
guich �9� has shown that by converting the expansion for
entropy in the inverse-temperature variable to an expansion
for entropy in the internal energy, one can develop a power-
ful extrapolation scheme that can build the ground-state en-
ergy and low-temperature power-law behavior into the ex-
trapolation of high-temperature expansions. However, we
note that such a scheme is only known for the entropy �and
related quantities� and not for susceptibilities or correlation

functions. We will show that for the specific heat �and en-
tropy� of two-dimensional Heisenberg antiferromagnets the
NLC scheme works better than direct extrapolation of HTE,
but the method of Bernu and Misguich is better �at least for
square and triangular lattice Heisenberg models� in that it
allows estimates all the way down to T=0.

In what follows we study thermodynamic quantities �in-
ternal energy, entropy, specific heat, and uniform susceptibil-
ity� of spin models to show how different clusters and ex-
trapolation techniques can be used to build NLC on square,
triangular, and kagomé lattices.

IV. SQUARE LATTICE

In this section we consider the square lattice. We discuss
three different cluster schemes that we have used to build our
NLC expansions.

The first, and most natural, choice is to consider all clus-
ters and order them by the number of bonds. This selection
has been called “weak embeddings” in the series expansion
literature �3�, and is typically used for HTE. In Fig. 1, we
show all clusters that have up to three bonds, and their lattice
constant.

Notice that one must include the single site cluster, which
corresponds to zero bonds. It dominates observables such as
the entropy at very high temperatures. For the smallest bond
clusters, such as the one with one bond �c=2� and the first
with two bonds �c=3�, it is easy to realize that L�c�=2 since
in the square lattice they can be only placed horizontally, and
vertically. The second cluster with two bonds �c=4� can be
placed in four ways �L�c�=4�, as one can realize rotating it
by 90°, and so on.

c

2

L(c)

2

3 2

4 4

5 4

6 2

7 4

11

8 4

9 8

FIG. 1. All clusters with up to three bonds and their lattice
constant for the square lattice.
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It is convenient to group together all clusters that have the
same Hamiltonian, and diagonalize them just once. Since the
Hamiltonian depends on the topology of how the sites are
connected, we call them topological clusters. Looking at our
example, clusters c=3 and 4 or c=6–9 have the same topol-
ogy. For calculating thermodynamic properties, all clusters
with the same topology make the same contribution. For the
square lattice, we have calculated all possible clusters, and
their lattice constants, up to 14 bonds. The number of topo-
logical clusters, and sum of L�c�, when grouped by their
number of bonds is presented in Table I.

A second choice is to identify clusters by sites. When
building the Hamiltonian for such expansion, one places all
possible bonds that connect any pair of sites in the graph.
This leads to a set of clusters and embeddings that are called
“strong embeddings” in the series expansion literature �3�,
and is typically used for generating the “low-temperature ex-
pansions” for Ising models. They can be used to generate
HTEs as well. However, different clusters, with a given num-
ber of sites, will contribute to HTEs in different orders. Thus,
the order to which the HTE is correct will be determined by
a subset of the clusters with the same number of sites that
happen to contribute in the lowest order. On the other hand,
having lots of compact clusters, with multiple connectivity
between points, could mean that they can give better results
beyond the radius of convergence of HTE. In Fig. 2 we show
all clusters that have up to four sites, and their lattice con-
stant.

By comparing Figs. 1 and 2 one can see that the latter
never includes graphs such as c=7 of the former one, i.e., all
squares are always closed in the site expansion, hence the
name “strong embeddings.” In addition, while each site in
the square lattice has four nearest-neighbor sites, each bond
has six nearest-neighbor bonds, which implies that the num-
ber of bond clusters increases much faster than the number of

site clusters. In the latter case, we have calculated all pos-
sible site graphs with up to 16 sites. Their number of topo-
logical clusters and sum of lattice constants, when grouped
by number of sites, is shown in Table I.

Looking at Tables I and II one can see that for NLC cal-
culations of bond and site based expansions the main limita-
tion is the computing time �too many clusters� �38�, and not
the memory as is usual for full diagonalization studies of

TABLE I. Number of topological clusters and sum of the lattice
constants for clusters with up to 14 bonds in the square lattice. The
cluster with 0 bonds is the one site graph.

No. of bonds No. of topological clusters �L�c�

0 1 1

1 1 2

2 1 6

3 2 22

4 4 88

5 6 372

6 14 1628

7 28 7312

8 68 33 466

9 156 155 446

10 399 730 534

11 1012 3 466 170

12 2732 16 576 874

13 7385 79 810 756

14 20 665 386 458 826

c

2

L(c)

2

3 2

4 4

5 4

6 2

7

11

8 4

9 8

1

FIG. 2. All clusters with up to four sites and their lattice con-
stant for the square lattice.

TABLE II. Number of topological clusters and sum of lattice
constants for clusters with up to 16 sites in the square lattice.

No. of sites No. of topological clusters �L�c�

1 1 1

2 1 2

3 1 6

4 3 19

5 4 63

6 10 216

7 19 760

8 51 2725

9 112 9910

10 300 36 446

11 746 135 268

12 2042 505 861

13 5450 1 903 890

14 15 197 7 204 874

15 42 192 27 394 666

16 119 561 104 592 937
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clusters with periodic boundary conditions. Within NLC one
can, however, change that order of limitations considering
more complicated �larger� building units for the clusters.
Hence, we drastically reduce the number of different clusters
to consider �5�.

A natural selection of a larger building unit in the square
lattice is, of course, the elementary plaquette or square. In
this case, a consistent NLC scheme requires that each bond
belongs to only one square. This means that we build our
clusters out of every alternate square. Different squares can
only share sites, which are the zeroth order of the square
expansion, and are properly subtracted when calculating the
weights in Eq. �2�. In Fig. 3 we show all clusters, with up to
three such squares, required for a consistent square based
NLC expansion.

The calculation of all possible clusters up to five squares
�up to 16 sites� is in this case very simple. In Table III we
show the results for the number of topological clusters and
sum of their lattice constants.

In the next subsections we apply the different NLC ex-
pansions detailed above to several well known spin models.
All calculations were done on �3.2 GHz� Pentium IV per-
sonal computers in times that span between 16 h for the

square based NLC expansion �up to 5 squares� and 60 h for
the bond based NLC expansion �up to 13 bonds�.

Heisenberg model

We now consider the antiferromagnetic Heisenberg model
�AFHM� on the square lattice. Its Hamiltonian can be written
as

H = �
�i,j	

Si · S j , �12�

where we have chosen the coupling constant to be unity, and
the sum runs over nearest-neighbor ��i , j	� spins.

The AFHM on the square lattice is known to have an
ordered ground state with long-range antiferromagnetic cor-
relations �10�. This model can be efficiently simulated using
QMC techniques, such as stochastic series expansions �11�.
QMC methods enable one to study much larger system sizes
than the ones accessible with exact diagonalization, although
the classes of models that can be addressed are limited by the
sign problem �12–14�.

We start by studying the temperature dependence of the
AFHM energy. In Fig. 4, we show a comparison of the bare
sums for the bond, site, and square NLC expansions, with
QMC results using the SSE technique �15�. Several issues
are apparent in Fig. 4. �i� All NLC expansions give the cor-
rect result at high temperatures. �ii� Direct NLC sums can
converge below T=1, something that is not possible using
HTE. �iii� The site expansion, which is closer in spirit to
low-temperature expansions, performs better than the bond
expansion �closer to HTEs�. This occurs even though the site
expansion, up to the same order, is less demanding compu-
tationally than the bond expansion �there are many topologi-
cal clusters in the bond expansion �1844� with 13 bonds and
14 sites, while in the site expansion only clusters with up to
13 sites were diagonalized�. �iv� The direct sum of the largest
size cluster expansion, the square expansion in this case,
converges to the lowest temperature �T
0.5�, to be com-
pared with �T
0.8� for the site expansion.

The AFHM on the square lattice is known to develop
antiferromagnetic correlations at relatively high tempera-
tures, i.e., it is the kind of model for which the direct NLC

c

2

L(c)

11

3

4

5

1/2

1

2

1

FIG. 3. All topological clusters with up to three squares and
their lattice constant for a square expansion.

TABLE III. Number of topological clusters and sum of the lat-
tice constants for clusters with up to five squares in the square
lattice. The cluster with zero squares is the single site graph.

No. of squares No. of topological clusters �L�c�

0 1 1

1 1 1/2

2 1 1

3 2 3

4 5 19/2

5 11 63/2

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

QMC 100×100
12 bonds
13 bonds

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

4 squares
5 squares

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

12 sites
13 sites

FIG. 4. �Color online� Energy as a function of temperature for
the antiferromagnetic Heisenberg model on the square lattice. Bare
NLC sums are compared with QMC results for a 100�100 lattice.
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sum cannot converge up to very low temperatures. Now, the
natural question that arises is how low in temperature can
one go by using the sequence extrapolation techniques dis-
cussed in Sec. III. In Fig. 5 we show two such extrapolations
compared with the QMC results. The subindex following the
name of each extrapolation stands for the numbers of cycles
of improvements done. In addition, for each cycle of im-
provement there are, in general, several terms. In what fol-
lows, when not explicitly specified otherwise, we will be
showing the highest one.

Figure 5 shows that extrapolations can indeed work very
well within NLC. We only show results for extrapolations of
the site expansion since for this expansion we obtain the best
results. Already at the level of the bare sum we saw that the
site expansion performs better than the bond expansion. On
the other hand, the square expansion, which produces the
best results for the direct sum, has too few terms to allow for
a successful extrapolation scheme to work. �One can also
realize that up to 13 sites �with 8739 different topological
clusters�, the site expansion has explored much more of the
lattice than the square expansion �with only 21 different to-
pological clusters�.� For the site expansion both Wynn’s and
Brezinski’s algorithms converge, and agree with QMC, down
to T
0.15. One should notice, however, that while Wynn’s
results are smooth and on top of the QMC results all the way
down to T
0.15, some points in the Brezinski’s extrapola-
tion fall away from that curve. This is the kind of numerical
problem one can run into after several orders of extrapola-
tions. However, with the exception of these few points, Brez-
inski’s results are still well converged and on top of the
QMC data. Also shown is the exact diagonalization result for
a 4�4 cluster with periodic boundary conditions. It shows
substantial finite-size effects already above T�1.

We now consider other thermodynamic quantities of in-
terest, such as the entropy and the specific heat. For the
former, we have already shown �5� NLC results for Brezin-
ski’s and Wynn’s extrapolations compared with the results of
Bernu and Misguich �9� �obtained by integrating their spe-
cific heat curves�. They exhibit a perfect agreement down to
T
0.3, where S
0.05. Here, we will show the results for
the specific heat.

In Fig. 6 we compare NLC results for the specific heat
�after extrapolation� with the ones obtained by Bernu and
Misguich �9�. Both approaches basically agree in the location
of the specific heat peak, although they give slightly different
peak values. Since NLC results have not converged fully
below the peak, they may lead to the same results as Bernu
and Misguich if a few more orders are included. Still, for Cv,
NLC performs much better than direct Pade extrapolation of
HTEs. QMC simulations for the specific heat also suffer
from large errors �Cv has to be obtained as derivative of the
energy�, and do not allow one to select any of the linked-
cluster results over the other �15�.

We also show in Fig. 6 the specific heat results from the
exact diagonalization of 4�4 and 3�3 clusters with peri-
odic boundary conditions �PBCs�, which helps to give an
idea of the order of finite size effects in this model. They lead
to a peak in the specific heat that is neither correct in its
position nor height. There is another point to consider when
comparing NLC with ED especially in dimensions greater
than 1. In the former case, we consider all possible clusters
that make the NLC expansion consistent, without any biasing
for any type of order. In exact diagonalization studies, PBCs
can bias the system towards or away from certain types of
order. For example, in the AFHM the 3�3 cluster with
PBCs has much bigger finite-size effects, because PBCs frus-
trate antiferromagnetism. This issue may become important
when the model under consideration has several competing
orders, and the selection of a particular finite size cluster may
artificially favor one order over the other. NLC, similar to
HTE, does not suffer from this problem, and gives an unbi-
ased answer for the thermodynamic properties.

B. XY model in a staggered transverse field

As discussed in Ref. �5�, NLC is ideal to study models
that stay short ranged at all temperatures or models in which
correlations build up slowly. In this section we discuss an
example of the former case, the XY model in a staggered
transverse field. Its Hamiltonian can be written as

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E
QMC 100×100
Brez

3

Wynn
5

ED 4×4

FIG. 5. �Color online� Energy as a function of temperature for
the antiferromagnetic Heisenberg model on the square lattice. Dif-
ferent extrapolations for the NLC site expansion are compared with
QMC results for a 100�100 lattice, and with exact diagonalization
results for a 4�4 cluster �with periodic boundary conditions�.

0.1 1 10
T

0

0.2

0.4

0.6

C
v

BM
Wynn

5

Euler
ED 4×4
ED 3×3

FIG. 6. �Color online� Specific heat as a function of temperature
for the antiferromagnetic Heisenberg model on the square lattice.
Different extrapolations for the NLC site expansion are compared
with the results of Bernu and Misguich �9� and with exact diago-
nalization results of small clusters �with periodic boundary
conditions�.
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H = �
�i,j	

�Si
xSj

x + Si
ySj

y� + 	�
i

�− 1�ix+iySi
z, �13�

where we have chosen the XY coupling to be unity, the sum
runs over nearest-neighbor ��i , j	� spins, and the last term
describes the staggered field with strength 	.

The XY model in a staggered transverse field can be
mapped onto a hard-core boson model, at half filling, with a
staggered site-dependent chemical potential. Such a model
has been recently studied in one �16�, two �17�, and three
dimensions �18�. In 1D, due to its mapping to noninteracting
fermions, one can realize that there is, at zero temperature, a
phase transition from a superfluid to an insulating phase for
	c=0, i.e., any finite 	 produces an insulating phase �16�. In
two dimensions this model has been studied by means of
QMC simulations, in this case the transition between the
superfluid �also Bose-Einstein condensed phase� and the in-
sulating phase occurs, at zero temperature, when 	c=0.992
�17�. Finally, in three dimensions this model has been used to
rigorously prove the existence of Bose-Einstein condensation
and Mott insulating phases when tuning the strength of the
staggered chemical potential �18�.

In what follows we consider the two-dimensional case. In
Fig. 7 we show the specific heat as a function of the tem-
perature in a case where the system is insulating at zero
temperature. We have chosen 	=1, close to the critical value
	c for the superfluid-insulator transition. Due to the presence
of a gap at zero temperature we can be certain that correla-
tions stay short ranged at all temperatures. However, they are
not negligible, and the direct sum of the NLC site expansion
exhibits a small oscillation below the peak in the specific
heat. A fully converged result, at all temperatures, can be
obtained after just one cycle of improvement with Wynn’s
algorithm or using Euler’s transformation. Figure 7 also
shows that the exact diagonalization results for a 4�4 clus-
ter with periodic boundary conditions still suffer from appar-
ent finite size effects.

Once in the regime of 	 where the system is superfluid at
zero temperature, the convergence of the NLC direct sum

does not reach very low temperatures, but sequence extrapo-
lations allow one to reach the region below the peak in the
specific heat. This can be seen in Fig. 8. As expected, in this
case the difference with ED is even larger than when 	
�	c.

C. Ising model

To conclude this section on spin models on the square
lattice, we discuss in this subsection the Ising model

H = �
�i,j	

Si
xSj

x, �14�

which is an exactly soluble classical model �19�.
In two dimensions, the Ising model is known to exhibit a

finite-temperature transition between an ordered �gapped�
phase, and a disordered high-temperature phase. As shown in
Fig. 9, the specific heat exhibits a divergence at the critical
point, which is known to be logarithmic �19�. For NLC, the
Ising model reduces to a counting problem as the Hamil-
tonian is already diagonal. In Fig. 9 we show direct sums for
the site based expansion up to 15 sites. Surprisingly, Wynn’s
extrapolations allow one to obtain very good estimates of the
specific heat very close to the critical point.
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FIG. 7. �Color online� Specific heat as a function of temperature
for the XY model in a staggered transverse field. 	=1 so that the
system is in the insulating regime. Direct sums and different ex-
trapolations for the NLC site expansion are compared with exact
diagonalization results for a 4�4 cluster �with periodic boundary
conditions�.
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FIG. 8. �Color online� Specific heat as a function of temperature
for the XY model in a staggered transverse field, with 	=0.5. Direct
sums and different extrapolations for the NLC site expansion are
compared with exact diagonalization results for a 4�4 cluster �with
periodic boundary conditions�.
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FIG. 9. �Color online� Specific heat as a function of temperature
for the Ising model. Direct sums and different extrapolations for the
NLC site expansion are compared with exact analytical results.

NUMERICAL LINKED-… . I. SPIN SYSTEMS ON… PHYSICAL REVIEW E 75, 061118 �2007�

061118-7



We should stress, however, that for finite-temperature
phase transitions with power-law singularities, HTE is prob-
ably the most efficient way to go. This is because such sin-
gularities can be built into the extrapolation. We do not know
if this is possible within NLC.

V. TRIANGULAR LATTICE

In this section we consider the triangular lattice. We dis-
cuss three different choices of basic clusters that allow one to
build a consistent NLC expansion.

The first possibility is, as in the square lattice, to build all
possible clusters with up to a given number of bonds. Their
number of topological clusters, and sum of L�c�, when
grouped by the number of bonds is presented in Table IV.

From the number of topological clusters and the sum of
lattice constants in Table IV one can see that the number of
graphs in the triangular lattice grows much faster than in the
square lattice. This is because in the triangular lattice each
bond has ten nearest-neighbor bonds, as opposed to six in the
square lattice. �The number of nearest-neighbor bonds deter-
mines the rate of growth of the number of possible clusters.�

A second natural choice is to build all clusters with up to
a given number of sites. Once again, when building the
Hamiltonian for such clusters one needs to place the maxi-
mum number of bonds possible in them. This selection of
building blocks for the NLC expansion provides a significant
reduction in the number of clusters one needs to consider as
compared to the bond expansion. �Each site in the triangular
lattice has only six nearest neighbor sites.� In addition, hav-
ing more compact clusters, this expansion performs better
and allows for better extrapolations in the intermediate and
low-temperature regimes. The number of topological clusters
and sum of lattice constants for the site based NLC expan-
sion is shown in Table V.

A triangular lattice is made out of triangles, so it is also
possible to develop a NLC for the triangular lattice where the

clusters consist of closed triangles. However, in this case, a
consistent NLC scheme requires that one restricts the calcu-
lation to a single site plus clusters of up �or down� pointing
triangles only. The reason for this restriction is that all bonds
of the triangular lattice belong to a unique up �or down�
pointing triangle. Different triangles should only share sites.
The number of topologically distinct clusters with 1 through
8 triangles, and the sum of their lattice constant, is shown in
Table VI. �We have grouped them by the number of tri-
angles.�

Notice that one advantage of the triangle-based expansion
in the triangular lattice, over the square-based expansion in
the square lattice, is that in the former the maximum number
of lattice sites of a cluster with Nt triangles is 2Nt+1, while
in the square lattice it is 3Ns+1 �Ns being the number of
squares�. This means that one can fully diagonalize clusters
with more triangles than squares, which helps both for the
bare NLC sums as well as for extrapolations. In the next
subsections we apply the above expansions to Heisenberg
and Ising models on the triangular lattice.

TABLE IV. Number of topological clusters and sum of the lat-
tice constants for clusters with up to 12 bonds in the triangular
lattice. The cluster with 0 bonds is the one site graph.

No. of bonds No. of topological clusters �L�c�

0 1 1

1 1 3

2 1 15

3 3 91

4 5 603

5 12 4215

6 28 30 535

7 72 226 905

8 198 1 718 454

9 590 13 207 569

10 1817 102 707 301

11 5886 806 366 139

12 19753 2 086 381 866

TABLE V. Number of topological clusters and sum of the lattice
constants for clusters with up to 13 sites in the triangular lattice.

No. of sites No. of topological clusters �L�c�

1 1 1

2 1 3

3 2 11

4 4 44

5 8 186

6 22 814

7 54 3652

8 156 16 689

9 457 77 359

10 1424 362 671

11 4505 1 716 033

12 14791 8 182 213

13 49138 39 267 086

TABLE VI. Triangular lattice number of topological clusters
and sum of the lattice constants for clusters with up to eight tri-
angles. The cluster with 0 triangles is the single site.

No. of triangles No. of topological clusters �L�c�

0 1 1

1 1 1/3

2 1 1

3 3 11/3

4 5 44/3

5 12 62

6 35 814/3

7 98 3652/3

8 299 5563
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A. Heisenberg model

The triangular-lattice antiferromagnetic Heisenberg model
is a fascinating quantum spin model, which has long-range
order at T=0 �20� but with spin-spin correlations that remain
short range down to fairly low temperatures �21�. In contrast
to the square lattice AFHM, the AFHM on the triangular
lattice shows no evidence for a renormalized classical behav-
ior �22–24� down to lowest temperatures that can be reached
in HTE. It is a frustrated spin model so that QMC methods
suffer from a sign problem. It has recently been argued
�25,26� that the anomalous finite-temperature behavior is due
to the excitation of rotons, which leads to high entropy at
relatively low temperatures.

The specific heat of the triangular lattice AFHM is a quan-
tity that could be of direct experimental interest. It has also
been calculated from HTE by the recent approach of Bernu
and Misguich �BM� �9�. These authors found that direct Pade
approximants �21� not only fail at surprisingly high tempera-
tures but are also unable to correctly locate the maximum of
the specific heat and its height.

In Fig. 10 we show the bare sums for the three possible
NLC expansions discussed before, and compare them with
the BM results �9�. The bond and site expansions, up to 12
bonds and 13 sites, respectively, are well converged only at
high temperatures �up to T
2�, with the site expansion be-
ing slightly better. On the other hand, the triangle based ex-
pansion converges down to a lower temperature T
0.6. This
temperature is very close to the lowest temperature up to
which direct Pade extrapolations agree with BM results.

On performing extrapolations over the bare sums shown
in Fig. 10, we found that the site expansion is the one that
enables an improvement of the convergence to the lowest
temperature. �The bare results for the triangle based expan-
sion can hardly be improved by sequence extrapolation
methods.� In Fig. 11 we show results for two possible ex-
trapolations of the site based NLC expansion compared with
BM results �9�.

Notice that we have included two terms for each extrapo-
lation scheme. To understand what they mean one has to
realize that up to 13 sites Euler transformation allows for 13
terms, from which we have taken the first four to be the bare
sums, and starting with the fifth we have applied the trans-

formation as explained in Sec. III. Hence, in Fig. 11 we are
showing the last two terms �in Sec. IV we showed only the
last one�. For Wynn’s approach on the other hand, one should
remember that two terms are lost after each cycle of im-
provement. So after five cycles �the case in Fig. 11� ten out
of the initial 13 terms in the bare sum are lost, i.e., in Fig. 11
we are showing the last two of the remaining three.

Figure 11 shows that while the Euler transformation al-
lows one to extend the convergence of the site based expan-
sion to the region where the triangle based expansion was
convergent, Wynn’s extrapolation scheme enables one to ob-
tain results at lower temperatures �up to T
0.3�. In contrast
to direct Pade for HTE, Wynn’s scheme for NLC allows one
to reach the maximum of the specific heat as predicted by
BM �9�.

A second quantity of much experimental interest is the
uniform susceptibility �27�. In Fig. 12 we show NLC �bare
and extrapolated� results for the uniform susceptibility �
� of
the AFHM on the triangular lattice. NLC results are com-
pared for this quantity with series extrapolations of HTE
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FIG. 10. �Color online� Specific heat as a function of tempera-
ture for the Heisenberg model on a triangular lattice. Direct sums
are compared with BM results in Ref. �9�.
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FIG. 11. �Color online� Specific heat as a function of tempera-
ture for the Heisenberg model on a triangular lattice. Extrapolations
are compared with BM results in Ref. �9�. The superindex refers to
the term in the extrapolation �see text for details�.
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FIG. 12. �Color online� Uniform susceptibility as a function of
temperature for the AFHM on a triangular lattice. NLC bare sums
are shown for up to 7 and 8 triangles �7 T and 8 T in the figure�, and
up to 12 and 13 sites �12 S and 13 S in the figure�. The correspond-
ing extrapolations for the site based �S Wynn� and triangle based �T
Wynn� expansions are compared with series extrapolation results of
HTE, obtained by integrated differential approximants �27�. For the
latter, only the upper and lower boundaries are shown.
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obtained by integrated differential approximants �27�. �No-
tice that the BM approach �9� is not suitable for calculations
of 
.�

A comparison between the results for 
 and Cv helps to
understand why the flexibility one has for selecting different
kinds of clusters in building the NLC expansion can be use-
ful. In contrast to Cv, the results of the bare sums for the site
based and triangle based NLC expansions for the suscepti-
bility converge well up to about the same high temperature
�see Fig. 12 vs Fig. 10�. This might suggest that the triangle
based expansion may not bring any advantage for this quan-
tity. However, in contrast to Cv, series extrapolations extend
the region of convergence for 
 for the triangle based NLC
�T Wynn in Fig. 12�, and allow one to reach lower tempera-
tures than the extrapolations for the site based expansion �S
Wynn in Fig. 12�. Notice that in the region where NLC ex-
trapolations are well converged they are in excellent agree-
ment with extrapolations of HTE obtained by integrated dif-
ferential approximants �27�. For 
, the integrated differential
approximants of HTE �which do not work so well for Cv�
appear to have convergence to lower temperatures than the
ones reached with NLC.

B. Ising model

The Ising model �Eq. �14�� on the triangular lattice is an
exactly soluble model �28–30�. At zero temperature it exhib-
its power-law decaying spin correlations and an extensive
entropy S=0.3231.

For this model, the triangle based NLC expansion con-
verges down to low enough temperatures that it even allows
one to study some ground state properties, for example, the
entropy shown in Fig. 13. One can see that the site based
expansion converges only up to T
1. Hence, the triangle
based expansion provides one with a qualitative improve-
ment over site �and bond� expansion. Adding up contribu-
tions from clusters up to Nt=1,2 ,3 ,4 ,5 ,6 ,7 ,8 triangles
leads to estimates of zero temperature entropy of
S=0.6931,0.4055,0.3677,0.3677,0.3499,0.3521,0.3417,

0.3440, respectively. In this case, the convergence to the
thermodynamic limit result is power law in 1/Nt, compared
to an exponential convergence in the kagomé case �5�, which
is not surprising given that the triangular-lattice model is
critical �30�.

Wynn’s extrapolation of the triangle expansion, up to 8
triangles, improves towards the thermodynamic limit result
as shown in Fig. 13. At low temperatures it gives an estimate
of the entropy S=0.3349. The extrapolation for the site ex-
pansion, on the other hand, only converges down to T
0.3.

A comparison of the NLC results for the specific heat with
the exact analytical calculation is shown in Fig. 14. For this
quantity, extrapolations of the site, bond, and triangle based
expansions do not allow one to improve over the direct tri-
angle based sum, so we do not show them there. It is remark-
able, however, that even though the system is critical the
results of the triangle based bare sums are not far from that
exact result.

VI. KAGOMÉ LATTICE

In this section we consider the kagomé lattice. As before,
we discuss three different choices of basic clusters that allow
one to build a consistent NLC expansion.

The first choice, again, is to use all clusters up to a given
number of bonds. The number of topological clusters, and
sum of L�c�, when grouped by their number of bonds is
presented in Table VII.

A second choice is to build all clusters with up to a given
number of sites. When building the Hamiltonian for such
clusters one needs to place the maximum number of bonds
possible in them. The number of topologies and sum of lat-
tice constants for the site based NLC expansion is shown in
Table VIII. We have grouped them by the number of sites.

Since the kagomé lattice consists of corner sharing tri-
angles, the triangle-based NLC, in this case, involves all el-
ementary triangles. This selection of building blocks for
NLC reduces dramatically the number of clusters to be con-
sidered. The number of topologically distinct clusters with 1
through 8 triangles and the sum of their lattice constant are
shown in Table IX. �We have grouped them by the number of
triangles.�
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FIG. 13. �Color online� Entropy as a function of temperature for
the Ising model on a triangular lattice. NLC bare sums are shown
for up to 7 and 8 triangles, and up to 12 and 13 sites �12 S and 13
S in the figure�. The corresponding extrapolations for the site based
�S Wynn� and triangle based �T Wynn� expansions are compared
with the exact analytical result.
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FIG. 14. �Color online� Specific heat as a function of tempera-
ture for the Ising model on a triangular lattice. NLC bare sums are
shown for up to 7 and 8 triangles, up to 12 and 13 sites, and
compared with the exact analytical result.
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In Ref. �5� we have already discussed extensively several
spin models on the kagomé lattice. Hence, here we will re-
strict our analysis to the specific heat and the uniform sus-
ceptibility of the AFHM.

A. Heisenberg model

The kagomé-lattice AFHM model has been argued to
have short-ranged spin-spin correlations down to T=0
�31–33�. Its thermodynamic properties have also been of
considerable interest �34�. In particular, an issue that is still
under debate �motivated by experiments on He3 on graphite�

is whether this model exhibits a two-peaked structure in the
specific heat �35,36�.

In Ref. �5� we have already studied the specific heat of the
AFHM. There we compared the direct sums of the triangle
expansion with Pade approximants from HTE �36�, which
showed an overall good agreement down to T
0.3. The tri-
angle expansion for the specific heat on the kagomé lattice,
in contrast to the triangular lattice in the previous section,
allows for an acceleration of the convergence by means of
Wynn’s extrapolations.

In Fig. 15, we compare the bare sums for the site and
triangle expansions with results of Wynn’s extrapolation and
Pade approximants �36�. As seen in Fig. 15, the results for
Wynn’s extrapolation appear to converge down to T
0.2
and exhibit a clear deviation from the Pade results. The de-
viations are, one could say, in the right direction since the
extrapolation of the specific-heat HTE down to T=0 has a
large missing entropy �36�.

To conclude this section we show in Fig. 16 NLC results
for the bare and extrapolated sums of the uniform suscepti-
bility �
� of the AFHM on the kagomé lattice. Similar to the
extrapolations for the specific heat, Wynn’s extrapolations

TABLE VII. Number of topological clusters and sum of the
lattice constants for clusters with up to 13 bonds in the kagomé
lattice. The cluster with 0 bonds is the one site graph.

No. of bonds No. of topological clusters �L�c�

0 1 1

1 1 2

2 1 6

3 3 62/3

4 4 77

5 8 304

6 17 3752/3

7 36 5294

8 81 22 845

9 194 299 924/3

10 481 442 507

11 1235 1 977 572

12 3297 26 729 935/3

13 8944 40 418 174

TABLE VIII. Number of topological clusters and sum of the
lattice constants for clusters with up to 15 sites in the kagomé
lattice.

No. of sites No. of topological clusters �L�c�

1 1 1

2 1 2

3 2 14/3

4 2 12

5 4 33

6 7 281/3

7 12 272

8 22 805

9 45 2420

10 88 7358

11 183 22 581

12 389 209 552/3

13 842 217 522

14 1855 681 224

15 4162 2 143 905

TABLE IX. Kagomé lattice number of topological clusters and
sum of the lattice constants for clusters with up to eight triangles.
The cluster with 0 triangles is the single site.

No. of triangles No. of topological clusters �L�c�

0 1 1

1 1 2/3

2 1 1

3 1 2

4 2 14/3

5 2 12

6 5 94/3

7 7 250/3

8 15 225
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FIG. 15. �Color online� Specific heat as a function of tempera-
ture for the Heisenberg model on a kagomé lattice. Direct sums, for
up to 7 and 8 triangles �7 T and 8 T in the figure� and up to 12 and
13 sites �12 S and 13 S in the figure�, are compared with extrapo-
lations for the triangle expansion and with two Pade approximants
from Ref. �36�.
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are well converged down to T
0.2, while the direct sums
for the triangle expansion converge down to T
0.3. On the
other hand, the site based expansion, up to 13 sites, con-
verges only down to T
1, which is the same temperature
one can access with HTE without extrapolations. Overall, for
the kagomé lattice we have found that direct and extrapo-
lated sums of the triangle based expansion converge better
for the thermodynamic observables considered �energy, en-
tropy, specific heat, and uniform susceptibility� than the site
and bond based expansions.

VII. CONCLUSIONS

We have presented an extensive discussion of the numeri-
cal linked cluster algorithm introduced in Ref. �5�. We have
detailed how to construct NLC starting from different build-
ing blocks on square, triangular, and kagomé lattices. Several
sequence extrapolation techniques, which we have used to
accelerate NLC convergence, have also been discussed.

In order to show how NLC works for models with differ-
ent ground states and orders, we have studied several spin
models on square, triangular, and kagomé lattices. We have
shown that NLC is better suited for systems that remain short
ranged at all temperatures �such as the XY model in a stag-

gered field�, and for models where correlations build up
slowly so that they become large only at very low tempera-
tures. A good example of the latter case is the AFHM on the
kagomé lattice, for which well converged results could be
obtained down to T
0.3 without the need of using sequence
extrapolation techniques.

Similar to HTE, NLC also allows for extrapolations be-
yond the region of convergence provided by clusters up to a
given system size. It is important to note that within NLC the
region of convergence is dictated by the largest cluster sizes
considered, and by the range of correlations in the thermo-
dynamic system. Hence, even without extrapolations, one
can, in principle, extend the region of convergence by in-
cluding larger clusters. In this respect NLC is fundamentally
different from HTE, whose region of convergence is dictated
by the dominant microscopic energy scale, and including
larger clusters can only help with extrapolations as they do
not improve the convergence of the direct sum. Extrapola-
tions within NLC allow one to go to temperatures lower than
accessible by means of direct Pade approximants for HTE.
Examples where NLC is superior in this respect include the
specific heat in the triangular and kagomé lattices.

Finally, we have also compared NLC results with those
obtained from exact diagonalization of clusters with periodic
boundary conditions. We have shown that NLC provides ac-
curate results even where ED still suffers from very large
finite size effects. Even for short ranged models such as the
XY model in a staggered field, ED can fail to predict, for
example, the position and height of the peak in the specific
heat.

Although it was not implemented here, one way to im-
prove NLC convergence at lower temperatures would be to
use Lanczos type methods to diagonalize larger clusters.
Larger clusters would become possible if one was to focus
only on low lying states rather than the full diagonalization
that we have used in this work.
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